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1 Overview

The last several years have seen an enormous increase in the use of text data to sup-

plement traditional financial decision making. For example, all major sell side and buy

side firms, as well as financial data providers, like S&P Global, Moody’s, and Bloomberg,

now devote significant resources to the processing of text data sets. These include news,

earnings calls, Fed and other central bank communications, and social media. The ma-

jor technology firms have similarly made large investments in natural language process-

ing (NLP), which has produced many open-source packages (such as TensorFlow from

Google and PyTorch from Facebook) that have attracted large user bases in industry and

academia. There is, in addition, a vibrant ecosystem of start-up firms focused on inno-

vative uses of text data in finance, such as RavenPack, Amenity Analytics, and Aiera, to

name just a few.

While NLP methods are now well developed, their application to finance and eco-

nomics is more nascent (see Gentzkow, Kelly, and Taddy 2019). This course introduces

students to state of the art NLP methods and their applications to traditional finance

problems. The course is Python-based, analytically rigorous, and emphasizes the use of

open-source NLP libraries. While there are other NLP courses at Columbia, this course

is unique because of its focus on the application of NLP methods to problems in finance

and economics.

PhD students will find the material valuable for their research. MS students will find

the course valuable because firms, including many hedge funds, are looking for employ-

ees who understand finance and can work with text data. Quantitatively oriented MBA

students will find the course valuable because it will prepare them to lead teams and
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build products that use text data.

2 Course structure

We cover the basics of text processing, including stemming, tokenization, number con-

versions, dropping stop words, and constructing document-term matrixes. We then do

basic sentiment calculations using existing sentiment dictionaries, and also discuss re-

cent techniques that allow word tone to be determined from combined market and text

data. Topic modeling is then introduced as a way of extracting deeper structure from

text. We next cover neural network (NN) and word embedding methods, and apply

these to calculate the unusualness of text. The course finishes with a discussion of

economic narratives as a unifying theme for how markets respond to text information.

Importantly, all NLP tools are analyzed in the context of solving financial problems.

Our two main data sets are the Reuters news archive, a collection of over 70 million

news articles carried by Reuters since 1996, and the S&P Global Transcripts database, a

collection of hundreds of thousands of corporate earnings calls dating back to 2008.

The course has weekly, coding-intensive problem sets focused on using NLP to ana-

lyze text data to better understand financial markets. The problem sets are motivated

by recent published or current working papers in finance and economics. The course

emphasizes rigorous econometric analysis of financial data sets using traditional infor-

mation, as well as information that can be gleaned only from text data.

Students are expected to have proficiency in Python (though course work can also

be done in R). Most of the text data that will be analyzed will be presented in already

cleaned form.
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3 Schedule

This is a half-term course which will consist of the following sessions. Each session

represents a three hour class.

Class Date Topic HW Due Date

1 3/22 Introduction & early attempts 1 4/05

2 3/29 Sentiment, underreaction, and trading costs

3 4/05 Learning from the data 2 4/19

4 4/12 Topic modeling

5 4/19 Textual similarity 3 4/29 (Mon)

6 4/26 Neural networks: An introduction

Homeworks

1. HW1: Merge data; sentiment and future returns; trading strategy

2. HW2: Learning from the data: implied word tone and topic models

3. HW3: Earnings calls similarity and neural network intro
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